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Abstract

Multidirectional observation from the spaceborne POLDER (Polarization and Directionality of the Earth Reflectance) instrument makes it

possible to measure the bidirectional reflectance of a large variety of Earth targets. A careful selection of cloud-free measurements with a

large directional coverage lead to about 22,000 sets of measured Bidirectional Reflectance Distribution Functions (BRDFs). This data set is

used to evaluate the ability of analytical models to reproduce the observed directional signatures. Among those evaluated, the best models

appear to be the three-parameter linear Ross–Li model, and the nonlinear Rahman–Pinty–Verstraete (RPV) model. On the other hand, all

models fail to accurately reproduce the sharp reflectance increase (hot spot) close to the backscattering direction. Based on physical

considerations, we suggest a modification of the Ross–Li model, without adding a free parameter, to account for the complex radiative

transfer within the canopy that leads to the hot spot signature. The modified linear model performs better than all others, including the RPV

nonlinear model. Although the correction modifies the retrieved directional signature parameters, it does not change significantly the surface

albedo estimates.
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1. Introduction parameters (Knyazikhin et al., 1998; Bicheron & Leroy,
The Bidirectional Reflectance Distribution Function

(BRDF) quantifies the angular distribution of radiance

reflected by an illuminated surface. A proper estimate of

these functions is necessary for land surface studies to:
. correct bidirectional effects in time series of vegetation

indices and reflectances (e.g. Leroy & Roujean, 1994; Wu

et al., 1995);
. evaluate the coupling between surface reflectance and

atmospheric scattering for proper atmospheric correction

(Vermote et al., 1997);
. classify land surface cover (Hyman & Barnsley, 1997;

Zhang et al., 2002);
. use the directional signature for the estimate of surface

parameters such as leaf area index and other biophysical
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1999);
. estimate the albedo from reflectance measurements

(Wanner et al., 1997; Cabot & Dedieu, 1997).

BRDFs have been measured in the field (e.g. Kimes,

1983; Deering et al., 1992) or from airborne instruments

(Irons et al., 1991; Leroy & Bréon, 1996). Such measure-

ments provide an adequate directional sampling, but with a

rather poor sampling of the natural biome variability.

Surface reflectance directional signatures have also been

measured from space with the AVHRR (e.g. Gutman, 1987)

or the ATSR (Godsalve, 1995). These instruments provide a

large sampling of Earth targets, but the coverage is limited

within the directional space due to the observation geometry

of these sensors. The MISR instrument onboard the Terra

platform provides an extended viewing geometry along the

satellite track with a spatial resolution of 275 m in ‘‘Local

Mode’’ and 1.1 km in ‘‘Global Mode’’ (Diner et al., 1998).

The along-track viewing geometry provides a 1D sampling
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within the hemisphere, which may be complemented by

MODIS measurements (cross-track sampling, Lucht & Lew-

is, 2000). Despite its lower spatial resolution (on the order of

6 km), the spaceborne POLDER (Polarization and Direc-

tionality of the Earth Reflectance) instrument (Deschamps et

al., 1994) provides a much better directional sampling that is

adequate to measure the BRDF up to about 65j of viewing

angles.

Many models have been proposed to simulate or repro-

duce the directional signatures of land surface reflectance.

These models may be classified into (i) ray-tracing simu-

lations (e.g. Gascon et al., 2001; Gemmell & McDonald,

2000); (ii) complex models that fully analyze the radiative

transfer within the canopy (e.g. Chen & Leblanc, 1997;

Kuusk, 1995); (iii) analytical models based on various

approximations of the radiative transfer (e.g. Roujean et

al., 1992; Rahman et al., 1993), and (iv) empirical models

(e.g. Walthall et al., 1985). The quality of these models can

be evaluated either through the comparison of simulations

by other models of higher complexity, or through a com-

parison with measurements.

In this paper, we evaluate a set of analytical models

against spaceborne measurements from the POLDER in-

strument, in line with a former study by Bicheron and Leroy

(2000) over a more limited data set. We only deal with

analytical models (classes (iii) and (iv) above) because the

others cannot be easily inverted on a set of measurements.

The model quality is assessed from the root-mean square

error (i.e. the measurement-model difference) after param-

eter inversion. The comparison indicates that the largest

differences are generally observed close to backscattering,

which suggests a physically based improvement of the

existing models. In the last section, we discuss the impact

of the hot spot on the albedo estimate.
2. Data

POLDER-1 (Polarization and Directionality of the Earth

Reflectance) was launched onboard the ADEOS-1 platform

in August 1996. Despite a premature failure of the plat-

form solar panel that doomed all instruments onboard,

8 months of reflectance measurements have been acquired

by POLDER. The major specificity of the radiometer that

is exploited in this paper is the multidirectional capability.

The bidimensional CCD matrix makes it possible to

observe, at a given time, a bidimensional field of view.

There is a large overlap of successive snapshots acquired

every 20 s. As a consequence, a given Earth target is

observed from up to 14 different directions as the satellite

overflies the surface. In addition, during the following

days, additional measurements of the same target are

acquired from yet other directions. A monthly synthesis

generates a very dense and complete coverage of the

viewing geometry up to viewing angles of 65j. On the

other hand, there is limited variation of the sun angle
during this period. In this paper, we assume no temporal

variation of the target during the period of synthesis.

Clearly, this generates some intrinsic variance, in particular

for snow-melting targets or for rapid vegetation growth.

Another limitation of the measurements is the coarse

spatial resolution (c 6� 6 km) that may lead to a signif-

icant fraction of mixed targets.

Cloud contaminated measurements are rejected using a

series of tests (Bréon & Colzy, 1999). Data processing then

performs the correction for atmospheric absorption (O3, O2

and H2O) and molecular scattering (Leroy et al., 1997). It

yields the so-called Level-2 products, on a per orbit basis,

with up to 14 different measurements per channel for a

given target. Temporal synthesis yields a much larger

directional coverage, with a density that depends mostly

on the cloud cover. Multi-temporal, multidirectional obser-

vations of the reflectance are available for all terrestrial 6-

km pixels over the Earth. To constitute a diverse—yet

manageable—data set of Earth directional signatures, a

sample was performed among the monthly synthesis. The

sampling is based on criteria of:
. directional coverage (many measurements available, well

distributed over the hemisphere);
. variety of Earth targets (based on the 17 classes IGBP

classification (Loveland et al., 2000), 8 months, 5 classes

of latitude, and 12 classes of NDVI);
. quality of the measurements (based on the smoothness of

the measurements on a multi-temporal basis).

The complete procedure (Lacaze, 2003) generated a set

of 22,594 BRDFs that are used in the following.
3. BRDF models

In this paper, we evaluate three linear models in addition

to a nonlinear one.

Linear models take the form:

Rðhs; hv;uÞ ¼ k0 þ k1F1ðhs; hv;uÞ þ k2F2ðhs; hv;uÞ

þ . . .þ knFnðhs; hv;uÞ ð1Þ

where hs, hv and u are the solar zenith, view zenith and

relative azimuth angles, respectively, Fi are a-priori kernels

based on either physical or empirical considerations, and ki
are free parameters to be inverted on the measurements. In

general, the linear models proposed in the literature have

three parameters (n = 2).

The modified Walthall model (Walthall et al., 1985;

Nilson & Kuusk, 1989) is a four-parameter linear model

based on empirical considerations.

F1 ¼ h2s þ h2v F2 ¼ h2sh
2
v F3 ¼ hshvcosu ð2Þ
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The Roujean model (Roujean et al., 1992) is a three-

parameter linear model. Kernels F1 and F2 have been

derived from physical considerations of the radiative trans-

fer at the surface. F2 attempts an approximation of the

radiative transfer within a vegetation canopy, whereas F1

estimates the directional reflectance of a flat surface with

randomly distributed and oriented protrusions. Note that,

because kernel F2 is based on Ross (1981) modeling and

assumes a large optical thickness, it is often referred to as

Ross thick (Wanner et al., 1995).

F1 ¼
1

2p
½ðp � uÞcosu þ sinu�tanhstanhv

� 1

p
½tanhs þ tanhv þ Dðhs; hv;uÞ�

F2 ¼
4

3p
1

coshs þ coshv

p
2
� n

� �
cosn þ sinn

h i
� 1

3
ð3Þ

where n is the phase angle given by:

cosn ¼ coshscoshv þ sinhssinhvcosu ð4Þ

and D quantifies the horizontal distance between the sun and

view directions:

Dðhs; hv;uÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tan2hs þ tan2hv � 2tanhstanhvcosu

p
ð5Þ

This model has been used for a global quantification of

directional effects (Lovell & Graetz, 2002; Leroy et al.,

2003).

The ‘‘Ross Thick Li Sparse reciprocal combination’’,

hereafter referred to as Ross–Li model, was selected for the

processing of MODIS land surface measurements (Lucht et

al., 2000). In the operational processing, it is a linear three-

parameter model, as in Eq. (1). On the other hand, the F1

kernel includes two additional parameters that may be freed,

in which case the model becomes a five-parameter nonlinear

model. The F2 kernel is equivalent to the F2 kernel of the

Roujean model (Eq. (3)). The F1 kernel accounts for the

mutual shadowing of protrusions.

F1 ¼
m

p
t � sintcost � pð Þ þ 1þ cosn

2coshscoshv

cost ¼ 2

m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 þ ðtanhstanhvsinuÞ2

q

m ¼ 1

coshs
þ 1

coshv
ð6Þ

The Rahman–Pinty–Verstraete (hereafter RPV) model

(Rahman et al., 1993) is a three-parameter nonlinear semi-

empirical model. It is based on the product of three

functions: the first one, derived from Minnaert (1941), is a

combination of the view and sun zenith angles; an Henyey–

Greenstein function P(n) accounts for the phase function of
scattering elements; while (1 +R(n)) explicitly accounts for

the hot spot:

Rðhs; hv;uÞ ¼ k0
cosk2�1hscosk2�1hv
coshs þ coshvð Þ1�k2

PðnÞ1þ RðnÞ�

PðnÞ ¼ 1� k21�
1þ k21 � 2k1cosðp � nÞ

�3=2

RðnÞ ¼ 1� k0

1þ Dðhs; hv;uÞ
ð7Þ

Inversion of the parameters of such a nonlinear model is

very time-consuming, impeding its use in an operational

processing line of spatial measurements. In order to solve

this problem, a linear version was derived (Engelsen et al.,

1996):

ln
Rðhs; hv;uÞ

H

� 	
¼ lnk0 � k1cosn þ k2 � 1ð Þln coshscoshvð

� coshs þ coshvð ÞÞ

H ¼ 1þ 1� R̄

1þ Dðhs; hv;uÞ
ð8Þ

where R̄ is the mean reflectance over the hemisphere.

In the next section, we evaluate the capability of these

analytical models to reproduce the directional signatures as

observed by POLDER. The model parameters [K] are

inverted so as to minimize the Root Mean Square (hereafter

RMS) difference between the measurements and the model

values. For the linear models, this inversion is a simple

matrix inversion:

½K� ¼ ð½F�t½F�Þ�1½F�t½R� ð9Þ

where [R] is a 1�N matrix, representing the column

vector of the N measured reflectances and [F] is an mxN

matrix, representing for each of the m kernels the column

vector of the kernel values for each of the N measurement

geometries.

For the RPV nonlinear model, we use the Interactive

Data Language (IDL, Research Systems) POWELL proce-

dure, with a fractional tolerance of 10� 6 and a maximum

allowed number of iterations equal to 5000. The POWELL

procedure is used here to minimize the mean-square error,

using the Powell method (Press et al., 1993).
4. Results

Fig. 1 shows a typical example of a measurement-model

comparison. The three rows of figures correspond to three

channels at 565 nm (green), 670 nm (red) and 865 nm (near

IR). The first column is a graphical representation of the



Fig. 1. Graphical representation of one BRDF sample of the database and comparison to the fitted Roujean model. Each line concerns a different POLDER

channel: 565, 670 and 865 nm from top to bottom. On the leftmost column, reflectances are plotted on a polar diagram: constant viewing zenith angles are

represented as circles every 20j; the principal plane is on the horizontal straight line with backscattering to the right. The small circle corresponds to the median

sun angle during the period of synthesis and indicates the hot spot direction. The central column is measurement-model difference in reflectance. Note that the

ranges for the color scales vary with the channel and are indicated on the bottom of each plot. The rightmost column is a scatter plot of measured and modeled

reflectances. The data were acquired during April 1997 over northern Argentina.

F. Maignan et al. / Remote Sensing of Environment 90 (2004) 210–220 213
color-coded measurements. The second column shows the

difference between the measurements and the model, after

parameter inversion. Finally, the third column is a scatter plot

of the measured and modeled values.

Although Fig. 1 is only one measurement among the

more than 22,000 cases of the database, and is based on the

Roujean model for column two and three, it is rather typical

for a vegetation cover. We now discuss, based on this figure,

several findings that apply to the vast majority of analyzed

cases.

In absolute values, the directional variability of the

reflectance is larger in the near IR than in the visible part

of the spectrum. On the other hand, in relative values, the

directional signature is larger in the visible. On the example

shown in Fig. 1, the reflectances in the green and red vary by

a factor of more than 4, whereas the near infrared reflectance

varies by a factor between 2 and 3. The largest reflectances

are always observed close to the backscattering direction,

except for (i) snow targets, easily identified by a large
reflectance in all three bands, that show a broad maximum

in the forward direction, and (ii) a few cases with a specular

maximum indicative of the presence of water bodies in the

pixel. Note that the measurement observed within one degree

of the backscattering direction is much larger than those at 5j
or more. The reflectance increase (c 0.05 in the visible,

0.15 in the near IR) has the same order of magnitude as the

reflectance outside of the hot spot feature.

The model reproduces closely the measured signature.

This is apparent both on the scatter plots (right column) but

also based on the range of measurement-model difference

(middle column) with respect to the range of measurements

(left column).

The measurement-model difference is on the order or less

than a few percent. It is slightly larger in the near IR,

although, the relative error is much smaller in this channel.

Clearly, both the measurements and the model errors con-

tribute to the difference shown in the middle column of Fig.

1. The most obvious model error is the inability to reproduce
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the large reflectance increase close to backscattering. Other

deficiencies are apparent where positive or negative mea-

surement-model differences are observed on a large direc-

tional portion of the BRDF. On the other hand, there are also

some significant measurement errors. Some lines of meas-

urements, corresponding to a single satellite pass, show a

reflectance larger than their neighbours (easily seen in the

measurement-model column). This may be interpreted by an

undetected cloud or aerosol contamination. This interpreta-

tion implies that the error is larger in the visible that in the

near IR. This is true in absolute (because the aerosol optical

thickness decreases with an increase of wavelength) but

mostly in relative since the surface signal is then much

smaller.

The analysis of Fig. 1 and all other similar plots based on

different surface targets clearly indicates that the signal to

noise in the measured directional signatures is much better

in the near IR than in the visible. This is easily explained as

the directional effect amplitude (the signal) scales roughly

with the surface reflectance, which is generally larger in the

near IR. In addition, the ‘‘noise’’ is mostly generated by

atmospheric scattering (undetected clouds, aerosols, mole-

cules), which tends to be larger in the visible. Both effects
Fig. 2. Comparison of the performances of five major BRDF analytical models. Eac

models. RMSEs are calculated for each pixel in the BRDF database. Only pixels w

more than 97% of the database; the resulting number of observations (Nobs) is i
contribute to a measurement of better quality in the near IR.

For this reason, the following analysis is based on the 865-

nm measurements. In the discussion section, we comment

the generalization to visible channels.

We now compare the measurement-model RMS error

(hereafter RMSE) when using different models. The RMSE

contains contributions from the measurement errors and the

model errors. It is expected that, when comparing two

models, the measurement contribution to the RMSE is very

similar for the two. Thus, in general, a lower RMSE

indicates that the model performs better in fitting the surface

BRDF. There may be exceptions to this rule when a

measurement error is better fitted by a model that performs

poorly at reproducing the real surface BRDF. However, such

cases cannot hide a general trend.

Among the models that are evaluated here, the modified

Walthall model is clearly the least performing (Fig. 2a)

despite a larger degree of freedom (four parameters) which

indicates the advantage of a physical—even approximat-

ed—a priori modeling of the surface radiative transfer as

used in the other models. Among the three other linear

models, the Ross–Li one is doing better than the Engelsen

one (Fig. 2c), which is itself better than the Roujean one
h plot is a bidirectional histogram of the RMSEs at 865 nm for two different

hose RMSE is lower than 0.05 for both models are shown, which includes

ndicated on the upper-left corner of each figure.
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(Fig. 2b). The Ross–Li linear model and the RPV get quite

comparable results (Fig. 2d). These conclusions are consis-

tent with Bicheron and Leroy (2000), which were obtained

with a reduced 400 BRDF database.

Fig. 2 shows that, for large RMSE values, i.e. targets that

are poorly fitted by the models, the nonlinear RPV model

and its linear version perform significantly better than the

Ross–Li one. These high values (above 0.3) are related to

snow measurements, in which case the Ross–Li model

hypotheses are not adapted. In fact, none of the models

analyzed here are designed for snow targets and they all

performed poorly in such case. Nevertheless, the RPV

model and its linear version, which have a stronger empir-

ical formulation and are more flexible, are better adapted

and tend to perform better than the others.
Fig. 3. Hot spot directional signature as observed from the POLDER

spaceborne instrument over a 7� 7 pixels area. The measured reflectance is

shown as a function of phase angle n. A minus sign has been applied to the

phase angle when hvcosu < hs. The wavelength is 565, 670 and 865 nm from

bottom to top. The line shows the result of a best fit through the data points

using the nonlinear function Rm= k0 + k1F1(hs,hv,u) + k2F2(hs,hv,u)(1+A)/
(1 + n/n0) where F1 and F2 are given in Eqs. (3) and (6) and k0, k1, k2, A

and n0 are free parameters. The data were acquired on April 12th, 1997

over the Northern part of China (Khingan Range).
5. Improvement of the Ross thick kernel and validation

The F2 kernel in Eq. (3) was originally proposed by

Roujean et al. (1992) based on radiative transfer within a

turbid vegetation canopy. Wanner et al. (1995) renamed this

kernel as Ross thick, because it applies to a thick canopy.

The same kernel is used in the Ross–Li linear model that

was shown above to be the most successful, together with

RPV, at reproducing the observed BRDFs. On the other

hand, although this kernel aims at modeling the radiative

transfer within the vegetation canopy, it does not account for

the so-called hot spot or opposition effect, which occurs

when viewing and illumination directions coincide. For

viewing geometries close to backscattering, a strong reflec-

tance peak is observed that is not accounted for in the linear

model, as shown in Fig. 1. Several studies address the

objective of improving the model capabilities to reproduce

the hot spot feature, mainly through the addition of a

specific kernel (see for example Chen & Cihlar, 1997).

Below, we propose to rather modify the kernel, based on

physical considerations.

In Roujean et al. (1992) the reflectance of a theoretical

vegetation canopy is considered based on the following

hypotheses:
	 the scattering medium is composed of small-scale

elements (leaves);
	 these elements are randomly distributed within the

canopy;
	 they are randomly oriented (spherical distribution);
	 only single scattering is considered (multiple scattering is

assumed isotropic and is therefore accounted for in

another kernel);
	 the medium is optically thick.

With these hypotheses, the canopy reflectance is shown

to be:

R ¼
2qleaf

3ðcoshs þ coshvÞ
ðp � 2nÞcosn þ 2sinn

p
ð10Þ
In this equation, the second fraction corresponds to the

scattering phase function of the leaves (Ross, 1981) whereas

the first one results from transmission effects within the

canopy.

These are the exact same hypotheses as in Bréon et al.

(2002) that specifically addresses the hot spot modeling.

The model in this paper computes the correlation in trans-

mission (gap fraction) between the incoming and outgoing

directions. It shows that accounting for the correlation in the

transmission increases the single scattering reflectance by a

factor 1+(1 + n/n0)
� 1 where n0 is a characteristic angle that

can be related to the ratio of scattering element size and the

canopy vertical density. At backscattering, the predicted

reflectance is twice as much as when correlated transmission

is not accounted for. For large phase angles, the ratio is close

to 1. The hot spot modeling has been validated against

measurements acquired with the spaceborne POLDER in-

strument with a very high directional resolution, i.e. on the

order of 0.3j (Bréon et al., 2002; Camacho de Coca et al.,

2004). In particular, it was shown that the shape of the hot

spot (i.e. the reflectance decrease with an increase of n) is
very well reproduced by the function (see an example in

Fig. 3.

Therefore, it appears possible to merge the two models

into:

R ¼ 2qleaf

3 coshs þ coshvð Þ
p � 2nð Þcosn þ 2sinn

p

� 1þ 1

1þ n=n0

� 	
ð11Þ

In addition, the Bréon et al. model fit to the spaceborne

measurements over a wide variety of surface covers indi-



Fig. 4. Isocontours of the Ross thick kernel with its original version of Eq. (3) (left figure) and the new version of Eq. (12) (right figure) that includes the hot

spot modeling.
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cates a small variation of n0, most of the targets being in the

range 1–2j. Thus, to avoid the addition of a free parameter

in the BRDF modeling, we suggest taking a constant value

of n0 = 1.5j. This simple modeling of a thick vegetation

canopy leads to a modified version of the F2 kernel of Eq.

(3) to:

FHS
2 ðhs; hv;uÞ ¼

4

3p
1

coshs þ coshv

p
2
� n

� �
cosn þ sinn

h i

� 1þ 1þ n
n0

� 	�1
 !

� 1

3
ð12Þ

Note that we leave the constant at its original value (� 1/3)

to minimize the change in the kernel and the expected

retrieved parameters (the factor in parentheses is close to

1 for most directions, i.e. for phase angles larger than a few

degrees). On the other hand, with this particular choice, the

kernel does not fulfil the original requirement of F2
HS

(0,0,u) = 0, necessary to interpret k0 as the reflectance for
Fig. 5. Comparison of the performances of the Roujean (left) and Ross–Li (right)

spot modeling (Eq. (12)). Each plot is a bidirectional histogram of the RMSEs at 8

the BRDF database. Only pixels whose RMSE is lower than 0.05 for both mode
both the sun and the observer at zenith. However, we

believe that the original model, which did not account for

the hot spot effect, probably fails when the illumination and

view directions coincide, since such geometric configura-

tion is favorable to a hot spot contribution. The F2 kernel

and its modified version F2
HS are shown in Fig. 4.

The improvement brought to the Roujean and Ross–Li

models by adding the hot spot modeling to the Ross thick

kernel may be quantified as above, through a statistical

evaluation of the RMSE to the observed reflectances. The

comparisons of these RMSEs with the original and cor-

rected versions are shown in Fig. 5. There is a clear

improvement of the measurement-model comparison for

most of the targets. For the targets that have a RMSE less

than 0.02, the RMSE relative decrease is on the order of

10%.

With the hot spot modeling introduced in the kernel, the

linear Ross–Li model now performs better than the nonlin-

ear RPV model (Fig. 6a). In addition, the linear model

superiority is mostly apparent for vegetated targets identi-
models, when using the original F2 function (Eq. (3)) and that with the hot

65 nm for the two different models. RMSEs are calculated for each pixel in

ls are shown.



Fig. 6. Same as Fig. 5 but for the Ross–Li Hot Spot and the RPV models. (a) is for all targets of the database. The other figures are for low (b) and medium–

high (c) values of NDVI.
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fied by a NDVI greater than 0.2 (Fig. 6c). For lower values

of the NDVI, the two model performances are equivalent

(Fig. 6b). The larger improvement for large NDVIs is

expected since the hot spot is a directional signature

generated by radiative transfer and scattering within a

volume, such as a vegetation canopy, and not by reflectance

over a rough surface.
6. Discussion

With the addition of the two hot spot corrected models,

we now have seven analytical models to evaluate. Fig. 7

shows the cumulative histograms of the RMSEs computed

over the full data set and for all three spectral bands (green,

red and near IR). Table 1 gives the median values of the

RMS errors both in the visible and near IR. Both the figure

and table demonstrate that the corrected Ross–Li model,

including the hot spot function, performs better than any

other model. Note that the relative improvement of the

RMSEs is very significant for the low values of the

cumulative histogram, which correspond to the best quality

measurements. The advantage brought by a better model is

mostly apparent when inverted against high signal to noise

measurements. On the other hand, for the low quality targets

(high values of the cumulative histograms), the nonlinear

RPV model performs slightly better. Note also that the

Roujean model, with the Hot Spot modeling correction,

performs better than the original Ross–Li or the RPV

models. However, there is apparently no argument to use

the corrected Roujean model rather than the corrected

Ross–Li one.

Roughly 10% of the targets in the database show an

RMSE larger than 0.03 whichever model is used. A large

fraction of those correspond to snow targets, for which none

of the tested analytical models is well suited. Other targets

show a very strong reflectance in the glint direction, which

indicates the presence of water bodies in the pixel. A single

directional observation with a measured reflectance much
larger than the model can generate a large RMSE. Finally,

some targets show rather noisy measurements with cloud

contamination or varying snow coverage. For noise-free

measurements, the models, and in particular the hot spot

modified Ross–Li one provide astonishing accurate fits of

the measurements, with correlation of up to 0.98 and

RMSEs of less than 6.10� 3 when the measurements vari-

ability is larger than 0.2.

The results in this paper were mostly based on 865-nm

measurements because this band shows directional signa-

tures with the highest signal to noise. Fig. 7 and Table 1

demonstrate that the same ranking of models is found in all

three bands. The RMSE are slightly lower in the visible

bands than in the near IR, but these are for much smaller

amplitudes of the directional effects. The model-measure-

ment correlation is much less in the visible than in the near

IR. A question of importance is whether this lower corre-

lation indicates that the BRDF models perform poorly, or if

it is only a consequence of the measurement lower quality.

As said above, the noise in the measurements, due to

aerosol, cloud or snow contamination is similar or larger

in the visible than in the near IR. Because the signal (i.e. the

reflectance directional variations) is much smaller in the

visible, the measurement signal to noise is lower. On the

other hand, the theoretical development of all models is

based on the single reflectance approximation. This approx-

imation is more valid in the visible than in the near IR.

Thus, although there is no demonstration of that from the

measurements, it is reasonable to assume that the models

perform better, both in absolute and relative, in the visible

than in the near IR.

We now evaluate the importance of hot spot modeling on

the target albedo estimate. The hot spot generates a large

reflectance increase, but limited to a small angular domain.

As a consequence, the impact on the albedo is the product of

a large and a small number. Based on the evaluation of the

hot spot function and the typical hot spot widths, Bréon et

al. (2002) predicts a negligible impact on the albedo. In

addition, some of the measurements are affected by the hot



Fig. 8. Comparison of the estimated albedo (i.e. the reflectance integrated

over the full hemisphere) when the measurements are fitted by the Ross–Li

and the Ross–Li Hot Spot models. The figure shows a 2D histogram of the

Table 1

Fitted model Median value First decile

565 nm 670 nm 865 nm 565 nm 670 nm 865 nm

Walthall 1.280 1.330 2.030 0.811 0.820 1.179

Roujean 1.120 1.160 1.460 0.703 0.738 0.927

Engelsen 1.110 1.140 1.420 0.640 0.671 0.817

Ross–Li 1.100 1.110 1.300 0.625 0.644 0.770

RPV 1.090 1.110 1.290 0.613 0.638 0.757

Roujean Hot Spot 1.060 1.090 1.250 0.618 0.657 0.732

Ross–Li Hot Spot 1.060 1.080 1.210 0.584 0.611 0.672

RMSE (in reflectance� 100) median values and first decile for each model

and all three bands: green (565 nm), red (670 nm) and near IR (865 nm).

With the first decile, 10% of the targets have a lower RMSE (50% for the

median).

Fig. 7. Cumulative histograms of the RMSEs derived from the full BRDF

data set when using all models that are discussed in this paper. POLDER

channels 565, 670 and 865 nm are shown from top to bottom.
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spot so that the model parameters somehow account for this

reflectance increase: a model that does not account for the

hot spot, fitted over well distributed measurements, tends to

underestimate the BRDF close to backscattering and to

overestimate it in other directions. This leads to a compen-

sation of errors on the albedo estimate.

To compute the spectral albedo from the retrieved

parameters, we have integrated the kernels over the full

hemisphere:

Gi hsð Þ ¼ 1

p

Z
Fi hs; hv;uð Þcoshvdx ð13Þ
X

Because some kernels tend to diverge at large zenith angles,

we have limited their values to those obtained for an angle

of 75j. The spectral albedos are then evaluated from the

retrieved parameters through:

AðhsÞ ¼ k0 þ k1G1ðhsÞ þ k2G2ðhsÞ ð14Þ

where we take the solar zenith angle as the mean value over

the measurements. This procedure is done independently on

the Ross–Li inverted parameters and the same using the

corrected F2 kernel (with a different G2). Fig. 8 shows the

difference in the spectral albedo estimates. There is no

significant bias in the retrieved albedos with the two

methods. The RMS difference is on the order of 10� 3,

which is less than 1% in relative units. For the visible

channels, similar results are expected. Because the hot spot

amplitude is smaller than at 865 nm (Bréon et al., 2002) the

absolute impact on the albedo is necessarily smaller than

10� 3. On the other hand, because the reflectance relative

increase due to the hot spot is larger in the visible, the

corresponding impact on the albedo may be larger, up to 2%

in relative.
estimate difference as a function of one estimate.
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7. Summary and conclusion

A large data set of spaceborne directional reflectance

measurements allows an evaluation of various analytical

models. A good fit of the measurements by a model is

limited both by the noise on the measurements and the

model quality. For the evaluation, near-infrared measure-

ments are preferred to visible ones both because of the

larger amplitude of the directional effects and because of

the lower atmospheric perturbation. In term of RMS error,

the relative difference between the models is rather small;

i.e. the noise on the measurement has a larger impact than

the model quality. Nevertheless, some models perform

better than others at fitting the observed directional

signature. The best fit is obtained with a linear three-

parameter model, based on the so-called Ross–Li model,

but with an explicit representation of the hot spot that

accounts for the reflectance increase a few degrees around

the backscattering direction. Typical RMS errors are on

the order of 0.01 both in the visible and the near infra-red

channels when the amplitude of the directional effects is

on the order of a few percent in the visible, and 0.2 in the

near-infrared.

The data set used in this paper is available to the

scientific community together with analysis tools (Lacaze,

2003). It is well suited to evaluate reflectance models and to

provide typical reflectance signatures for a wide variety of

surface covers. Its main limitation is the low spatial resolu-

tion that implies a majority of mixed surface coverage.
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